SECURITYLIBRARY

SecureOS™: A Working Example
Of A Secure BSD OS

Secure Computing Reprint Series
Spence Minear
2000

SECURE

Secure Computing Corporation European Headquarters
Corporate Headquarters tel +44.1753.826000
One Almaden Boulevard, Suite 400 fax +44.1753.826001
San Jose, CA 95113-2211

tel +1.800.379.4944 Asia/Pacific Headquarters
tel +1.408.918.6100 tel +65.535.6206

fax +1.408.918.6101 fax +65.535.8138

Wwww.securecomputing.com

TABLEOFCONTENTS

SecureOS™: A Working Example Of A Secure BSD OS

Abstract e e 3
Introduction L e e e 3
SecureOS: An OVerview o v v v v i e 4
Assured Pipelines e e 5
SecureOS: A More Detailed Look 7
Comparison of TE to Unix Security Controls 8
Comparision of TE and the IEEE Capability Model 10
Policy Assurance ISSUES v v v v v v i e e e e e 11
Conclusion L e e e 11
Bibliography e e 11

SECURE

Secure Computing Reprint Series. 2

SECURITYLIBRARY

SecureOS™: A Working Example Of A Secure BSD OS

Abstract

Counting on the security features of applications to
protect your systems is risky business. In fact, appli-
cations by themselves can never be a sufficient secu-
rity solution. Why? Because most applications
operate on operating systems with inadequate secu-
rity facilities. This means that if any part of the sys-
tem is compromised the entire system can be sub-
verted. At Secure Computing, our premise is that
security of an application is only as good as that of
the operating system that the application is running
on. SecureOSm™ is a proven, secure operating sys-
tem that has been an integral part of our firewall
products for 5 years. In this paper, we will discuss
SecureOS, its underlying Type Enforcementr secu-
rity technology, how it compares to other security
approaches, and how it can bring a new level of
security to today's eBusiness environments.

Introduction

In October of 1999 PC Week set up two challenge
web sites, one Linux and one NT, and established a
$2000 prize to go to the first person to successfully
attack either of the servers. The Linux Apache sys-
tem was breached in about 20 hours. Again in June
of 2000 eWeek (formerly PC Week) set up a new
Openhack site and invited people to have at them
again; (For details, see “Hacker attacks welcomed,
Openhack data will help e-businesses develop the
appropriate balance of Net security, openness” By
Henry Baltazar, eWeek labs, June 26, 2000.) Once
again, the challenge site fell several times in a rela-
tively short period of time.

Lluis Mora is credited with breaking into both the
1999 and 2000 challenge sites. In a summary of
the successful attacks, he is quoted as saying; “If
you haven't addressed application security, it's just
a mater of time till somebody finds out and

exploits it”, (source: Openhack: Tough but not
invincible. Details offer insight into systems vulner-

SECURE

Secure Computing Reprint Series.

ability by by Timothy Dyck, eWeek August 7,
2000). There is certainly some significant truth to
this statement. However, it is also true that placing
the focus of security on the application is looking at
the wrong point in the system and leads to a never
ending fail, - patch, - fail, - patch battle strategy. A
review of the vulnerabilities that lead to the success-
ful attacks on the eWeek challenge sites, support the
truth of a simple fact of modern commercial soft-
ware systems. That is that they are always going to
have errors waiting for someone to find and
exploit. There simply is insufficient time to per-
form the test and analysis required to get our mod-
ern complex applications absolutely right before
they are rushed to market. Case in point: The
recent experience with the Openhack site shows
that the same application fell twice to basically the
same attack. Even after a “patch” was applied to fix
the hole used by the first attack. The second
attacker found another similar hole, walked
through it, and defeated the recently patched appli-

cation yet again.

The fundamental issue behind these failures is not
just that the application has not addressed security,
but rather that the operating systems they run on
have weak security facilities. Given that applica-
tions have errors, and that the operating systems
they run on have no ability to confine the impact
of successful attacks, all types of systems will
remain vulnerable. The 1999 ¢Week challenge was
subverted, in about 20 hours even though the
eWeek people followed all the best advise available
to them to make their site secure. They were in part
successful as the attackers story describes numerous
direct attack attempts that were stopped as a result
of their diligence, i.e. parts of the application were
free of easily exploitable errors. However, the
attacker then changed directions, dug into some of
the ancillary aspects of the application and found a
small hole. This hole allowed the attacker to gain
control at the operating system level and was then
able to defeat the target application. Essentially the

SECURITYLIBRARY

SecureOS™: A Working Example Of A Secure BSD OS

attack was accomplished by tunneling under all of
the security actions of the application. There sim-
ply is no way the target application could defend
itself once the operating system was subverted.

The experience of the eWeek sites, and a quick
review of any number of recent CERT advisories
suggests that stories of security compromises will
continue as long as the following two facts remain
true:

* In the modern world of Internet time, manpower,
and budget constraints, applications will never be
error free.

* The security facilities of the commonly used oper-
ating systems are inadequate. They do not provide
sufficient control to confine the damage done by
successful attacks on an application.

In 1995, Secure Computing Corporation (SCC)
fielded the first Sidewinder Firewall system. A
unique aspect of Sidewinder, then and now, is that
its operating system, referred to as SecureOS, incor-
porates security features specifically designed to
address the types of problems discussed above. The
security enhancements are integral to the operating
system kernel and thus cannot be bypassed. They
provide a range of facilities that can stop many
attacks all together or at least confine the scope of
damage that might occur when one application or
part of an application is successfully attacked.

SecureOS is based on, and is binary compatible
with the BSDI release of BSD. The core technology
for the security enhancements was derived from a
sequence of research and development programs
conducted by SCC and its predecessor group, the
Secure Computing Technology Center of
Honeywell Inc. Though the focus of the original
research and development work was on high-assur-
ance military-level security, much of what we
learned was directly applicable to building a secure
Unix operating system which provides a secure
platform for a broad range of Unix based applica-
tions.

SECURE

Secure Computing Reprint Series.

SecureOS~: An Overview

The security concepts that were applied in the
development of SecureOS were derived from the
knowledge and experience that we gained while
building the secure operating system known as
LOCK(tm). LOCK was the first worked and
fielded system which contained Type
Enforcement(tm) security technology. Type
Enforcement was developed by Earl Boebert, the
first Chief Scientist of SCC, Richard Kain, a for-
mer member of the MIT Multics development
effort, and others who worked a range of computer
security programs in the 70's and 80's.[Boebert88]

The focus of this early work was to develop a high
assurance secure system for application within the
military establishment. As such, the work typically
started with a focus on supporting the classic
Multi-Level Secure (MLS), Bell and
LaPadula[BL76], type of policy. But in our work,
as with most MLS secure operating system efforts,
it quickly became clear that providing only MLS
security policy support was not sufficient to build a
secure computing system. A MLS policy by itself
simply does not provide an adequate control model
to deal with the range of issues that must be
addressed within a secure computing system. The
MLS policy emphasizes protection of data from
unauthorized access, i.e. it is fundamentally a pri-
vacy control model. What it lacks is the ability to
control the integrity of the system and data. For
example, the MLS control model does not inher-
ently provide mechanisms to control which
processes can change system time, or which
processes can change security attributes on a file. As
such all MLS systems have one or more additional
policies to fill this integrity control gap. To deal
with this limitation Boebert and Kain developed
Type Enforcement to solve the system integrity
problem. During the building of LOCK, which
incorporated both MLS and Type Enforcement, it
became quite obvious that adding just Type

SECURITYLIBRARY

SecureOS™: A Working Example Of A Secure BSD OS

Enforcement to an existing operating system, such
as Unix, would provide an operating system with
significant security benefits for a range of typical
commercial applications. Thus, the birth of
SecureOS.

The essence of Type Enforcement technology is
quite simple. It is a label based mandatory policy
approach not unlike a classic MLS system. It pro-
vides a range of control facilities that greatly
enhance the overall security and integrity of appli-
cations that run on an operating system with Type
Enforcement technology. “Label-based” means that
we associate security attributes with processes, files
and other controlled objects. “Mandatory” means
that it applies to all operations on the system and
that the Type Enforcement policy cannot be
bypassed. At this level it may sound very similar to
a typical MLS computing system. One of the sig-
nificant differences between a Type Enforcement
system and other secure systems is that the labels
given to processes and files have no inherent signifi-
cance. The actual security policy is an independent
set of rules that define permissions between the rel-
evant pairs of labels.

Type Enforcement control is added to the BSD
Operating System by making the following types of

changes to the system kernel.

* All active processes are provided with a security

label called a Domain.

* All objects that are the target of a controlled oper-
ation are provided with a security label called a
Type.

* All points in the kernel where a security policy

decision is required, is augmented with a call to the
Type Enforcement policy engine. Input to the Type
Enforcement policy engine is a triplet consisting of:

SECURE

Secure Computing Reprint Series.

1. The Type Enforcement Domain attrib
ute associated with the acting process,

2. The Type Enforcement Type attribute
bound to the target object, and

3. An identifier of the operation being per

formed.

* A kernel resident policy engine is added to the
kernel which determines a binary ALLOW/DENY
result based on the contents of that systems security
policy.

With these enhancements SecureOS provides the
ability to control all security-relevant operations in
agreement with a well-defined Type Enforcement
security policy. Such a single security policy can
deal with the confidentiality issues that one typi-
cally associates with a secure operating system. In
addition, it provides a system developer with a
range of controls that greatly enhance the integrity
of the data by enforcing a concept known as an
assured pipeline. Thus, SecureOS accomplishes with
one policy what MLS systems require multiple
policies to accomplish.

Assured Pipelines

A processing pipeline is a sequence of processing
steps designed to take a defined set of input values,
perform a well defined sequence of processing
transformations, and generate required output.
One example of such a processing pipeline from a
life-critical application is a digital flight control sys-
tem. Before an airplane with a digital flight control
system is allowed to fly, extensive design and analy-
sis must be done to ensure that the outputs to the
control surface actuators meets the following basic
criteria:

SECURITYLIBRARY

SecureOS™: A Working Example Of A Secure BSD OS

* The correct input signals are read,
* The correct control law algorithms are computed,
* The output is sent to the correct actuators, and

* The processing is done in the correct time fre-
quency.

* All failure modes are analyzed to ensure that
either the correct processing sequence is performed,
or the system fails to a safe state.

Flight control systems may include any number of
sophisticated hardware techniques, static analysis
and testing to gain the level of assurance required
for FAA certification. With the exception of the
time frequency requirement in the example above,
the first three elements of a processing pipeline are
common to most eBusiness systems. If one can
provide assurance that the processing is done in

Figure 1. Web Site Pipeline

- !
Applicatiin
Ciri Files

Hek

. "_'_z.._-ﬁ—l' Berver

agreement with a defined processing sequence, one
has the makings of a secure eBusiness system. The
Type Enforcement facilities of SecureOS were
designed to provide this kind of assurance for mili-
tary applications. Type Enforcement also provides
the same type of benefits for a range of eBusiness
applications.

Figure 1 portrays several aspects of a typical Web
site as several simple processing pipelines. The fig-
ure includes basic Type Enforcement label examples
and permissions defined by the relationship
between the Domains and Types. These relation-
ships are pre-defined in the system security policy
and are enforced by Type Enforcement facilities
within the kernel. The added protection provided
by the Type Enforcement facilities increase the
integrity of the data and services being provided by
the example web site. The key points when looking
at such a processing example include the following:

Lher

Procecs

SECURE

Secure Computing Reprint Series.

Servar
Ezecatal:le

ek
Admin
Executable

I'="WAdmE

SECURITYLIBRARY

SecureOS™: A Working Example Of A Secure BSD OS

* To maintain the integrity of the viewable infor-
mation, the Web server should have read-only
access to the information files it serves to a client.
This provides assurance that an overrun of the
server will not compromise the integrity of the
data.

* The ability to modify the viewable data should be
limited to specific management processing
pipelines. The management pipeline should be
include a processing step that includes a control
point to ensure that strong identification and
authentication tests are passed before actually enter-
ing the Web Admin domain. Also, the Web server
would not be able to directly initiate any Web
Admin domain processing. This provides increased
assurance that the state of the viewable data is mod-
ified only by the correct people using only the cor-
rect tools

* The Web server must run a single, well-defined
server program. The Web server must not be able
to modify its own executable or any other exe-
cutable.

* The Web server must be able to initiate web
applications. Each such application must operate in
an application specific Domain, acting on files with
application specific Type attributes. The applica-
tion's Domain must have only the permissions
required to accomplish their specified task. This
greatly limits the damage that can be done if one of
the applications is successfully attacked.

* The Web server program should not be exe-
cutable in any other domain. This provides assur-
ance that when the server is running, it is running
with the correct security attributes.

* Other than log data, the Web server should not
be able to create or modify any other files on the
system. This provides assurance that a compro-

SECURE

Secure Computing Reprint Series.

mised server cannot be used to attack other parts of
the system.

* The Web server should not be able to initiate any
non-Web application processing elements. This too
provides assurance that a compromised server can-
not be used to attack other parts of the system.

SecureOS: A More
Detailed Look

As mentioned in the SecureOS overview, all Type
Enforcement policy checks are provided with three
input parameters; 1) the Type Enforcement
Domain attribute of the acting process, 2) the Type
Enforcement Type attribute of the target object,
and 3) the identification code of the operation
being performed. The first two parameters can be
viewed as row and column indices of a permission
matrix. The matrix cell that they reference contains
an access vector that indicates the permissions the
operating Domain has to the target Type. The third
parameter identifies the operation being per-
formed. This information is used to determine the
permissions required at the specific check point.
The policy check finds the indicated access vector
in the matrix and compares the permissions
required for the operation and reports whether the
operation is to be allowed or denied.

The target Types within SecureOS are grouped into
four classes, each of which has a different range of
possible permission values. The four classes are:

* Operations directed at some aspect of the core
system state,

* Operations directed at another process,
* Operations directed at a file, and
* Operations directed at sockets.

Examples of the first Type Enforcement Type class
include changing system time, shutting the system
down, setting the host name, etc. The range of per-
missions for this Type class can be viewed as a sim-

SECURITYLIBRARY

SecureOS™: A Working Example Of A Secure BSD OS

ple list of “privileges” that may be held by the
Domain. This is the one case where the Type
Enforcement policy is actually one dimensional in
nature, i.e. there is really only one variable in the
parameters to a Type Enforcement policy check,
the process's Domain. The “check” simply deter-
mines whether or not the Domain has the privilege
to perform the specific system operation.

The remaining three Type Enforcement Type
classes are all related to two-dimensional policy
checks in that both the process Domain and the
object Type parameters are variables in the Type
Enforcement policy decision logic. In the second
target Type, the target security attribute is actually
the Domain of another process on which the action
is to be performed. In the third type class the target
security attribute is the Type associated with a file.
In the fourth type class the target Type, is a Type
attribute derived from the socket attributes, like
protocol, port, or an associated network interface.

Each of these Type classes has a different range of
permissions that make sense based on the opera-
tions that can be performed on objects of this class.
Permissions like read and write control make sense
for operations on files, but not for controlling sig-
nals between processes, or working with sockets.
For file related types the range of permissions
includes:

* create: The process can create files with this Type

* read: The process can read from files with this
Type
* write: The process can write to files with this Type

e rename: The process can change names of files

with this Type

* execute: The process can execute files with this
Type

* destroy: The process can delete files with this
Type.

SECURE

Secure Computing Reprint Series.

For process-to-process control the list of permis-
sions includes permissions that control which types
of signals can be sent from one process to another,
and a permission that determines whether a process
can transition from its current Domain to another
Domain. The transition permission is checked dur-
ing exec processing which is the point were
Domain transitions occur. pipelines.

The Domain-to-Domain transition control is used
to ensure that processing steps in a pipeline are ini-
tiated in the right order and by the right processes.
Domain-to-Type file control is used to ensure that
each processing step executes the correct program.
Domain-to-Type file and socket controls are used
to ensure that information flow is limited to the
correct inputs and outputs for each processing step.
In total they provide the control required to pro-
vided the assurance that a processing pipeline oper-
ates in agreement with its design specification
which is defined in the Type Enforcement security

policy.

Comparison of Type
Enforcement to Unix
Security Controls

The original report of the first hack of the eWeek
challenge site provides insight into the limitations
of the standard Unix security model. In this case,
the system was configured well, so a direct attack
on the server failed. Even so, this did not stop the
attack. The attacker knew that the underlying oper-
ating system could be subverted and then be used
to attack the primary target application. So he
altered the focus of the attack to look for soft spots
elsewhere in the application. And he found one.
The outcome was a successful attack resulting from
finding an error in a minor Web application pres-
ent on site. The pre-defined task of the faulty appli-
cation was to allow a remote administrator to use
the Web server to update elements of the advertise-
ment pages present on the system. The application

SECURITYLIBRARY

SecureOS™: A Working Example Of A Secure BSD OS

was designed to try and make sure that the ad
administrator could update only their own files.
But the error in the application allowed the
attacker to write an executable file on the system
rather than a GIF file. Once that was done, the
game was essentially over. The attacker used the
uploaded code to launch an attack on cron, which
then gave him the ability to run his own code in a
IOOt process.

Why do such flanking attacks succeed? Because the
Unix security model does not provide the basic
controls required to stop them. One of the key
security questions to ask is: why should a CGI
script, —whose job it is to load display files—, be
able to create anything that can be ever be exe-
cuted? The answer is: It should not. The applica-
tion developers of the targeted advertisement appli-
cation knew this and tried to ensure that their code
would stop it by filtering the uploaded data. But an
error left a vulnerability. This is a common occur-
rence, despite any developer's best efforts. And
because the operating system control assumes that
if one owns a file then one may change its permis-
sions so it can be executed. Simply put, the operat-
ing system provided no back up protection for the
error in the application. This, combined with the
infamous all-powerful global privilege granted to a
root process, resulted in the compromise of the
entire system.

Unix security can be characterized as a user iden-
tity-based Discretionary Access Control (DAC)
model. This means that all critical decisions are
based on the user identity bound to processes and
files. It is the discretionary aspect of the policy that
grants the owner of a file the right to do anything
they want with it, including execute it. It does not
matter if the file or process is associated with an
application that should not be allowed to write an
executable file. Regardless of the need for this
restriction, a file owner can do what they want with
files they own. The Unix security model simply
does not provide any facilities to stop it. As shown

SECURE

Secure Computing Reprint Series.

by the ¢Week experience, once an attacker is able to
make a system to execute his own program, they
have won the game and they own the system.

When one considers building a secure Web site,
one should map the processing to one or more
assured processing pipelines. If CGI processing is to
be allowed, a developer should ask “What opera-
tions does a given CGI application need to perform
its assigned task?” Clearly, a CGI script that loads
any file on the system should NEVER be allowed
to create a file that could be executed. If all the
developer has to work with is the Unix control
model, then he or she must work very hard to try
and ensure that the application filters the input well
enough to prevent an attacker from loading an exe-
cutable file onto the system. But if the application
level checks fail, the entire system is then vulnera-
ble. One can hope that by running the application
as an unprivileged user, like the nobody user, that a
successful attack on the application will not result
in further damage. But it is all too clear that this is
not the case.

Type Enforcement provides the necessary facilities
to build assured pipelines in which the application
elements are given the privileges required to per-
form their defined task, but nothing more. The
general approach would be to make sure that the
likes of a CGI script whose job it is to upload new
advertisement files, runs in a Type Enforcement
Domain that cannot create files with a Type that
can be executed by any Domain. The Type attrib-
ute on such files would make the file accessible by
the server so the advertisement could be displayed
but not allow it to be executed by any Domain. If
an attacker does find an application error that lets
them write their binary file onto the system they
still cannot get it to execute. The worst that should
happen is that an attempt to display it should result
in an error message from the server. Unlike normal
Unix control, in SecureOS ownership of the file
does not imply the ability to make it executable.

Thus this class of attack is stopped cold.

SECURITYLIBRARY

SecureOS™: A Working Example Of A Secure BSD OS

The Unix security model only provides a single
thin wall of protection that once breached, yields
total access to the system's interior. Type
Enforcement, on the other hand, provides many
more and much thicker walls that can be placed
around as many different applications as is prudent
for a given application. The Type Enforcement
control model provides finer granulation of control
and it has no global privileges like the all powerful
Unix root id.

Comparison of Type
Enforcement and the IEEE
Capability Model

Both Type Enforcement and the IEEE
capability[Posix.1e] models evolved out of earlier
secure operation system development efforts. As
described earlier, Type Enforcement came from the
LOCK work, while the IEEE capability model
came out of concurrent Compartmented Mode
Workstation (CMW) efforts. One might argue that
they both were motivated by the earlier rings con-
cept in the Multics[Organic72] systems. But in
both cases they were motivated by the need to fill
the integrity and control gaps left when trying to
build a MLS system.

One can look at the two models and find a number
of similarities. In the Capability model a list of
capabilities is associated with a process and a spe-
cific capability is associated with each controlled
operation. Also a list of capabilities is associated
with executable files. The existing suser Unix policy
decision logic in the kernel is replaced or aug-
mented with a call to the capability module to per-
form a policy check. This check determines if the
process has the capability required for the specific
operation. The capability check code typically looks
something like:

capability(cur_proc, REQUIRED_CAPABIL-
ITY);

SECURE

Secure Computing Reprint Series.

In contrast the Type Enforcement policy check
looks like:

te_check(cur_proc, target_type, OPERA-
TION_ID);

Though there are similarities, several significant dif-
ferences are noteworthy.

* An [EEE capability is essentially a global privilege
and thus it is effectively a one dimensional logic
model. If a process has a privilege like
DAC_OVERRIDE, it can apply it to all files that
it accesses. There is no way to say you can override
DAC on one file but not on another. As stated
before Type Enforcement provides a two dimen-
sional logic model. Decisions are based on the Type
Enforcement security attributes of both the process
and the target of the operation.

* In the IEEE capability model the binding of
which permission is required for each operation is
burned into the code and frozen. This means that if
two operations are associated with the same capa-
bility when the kernel is written one could never
separate control of those two operations without
making kernel changes. With Type Enforcement,
the policy check is not told what capability/permis-
sion is required, it is asked if the current process has
permission to do the specific operation. The bind-
ing of permissions to operations, is an aspect of the
overall policy-writing exercise and can be modified
for different applications in response to the control
needs of each specific application.

* As with all capability security models, the IEEE
capability model needs to deal with the inheritance
of capabilities from parent to child. This is accom-
plished through a set of rules that involves the
capabilities currently associated with a process as
well as the capabilities that may be associated with
the file being exec'd. Type Enforcement technology
has no inheritance concept. In the first place
Domain transitions are controlled. Second when a
domain transition occurs, whatever new Domain is
assigned can have a totally distinct and separate set

10

SECURITYLIBRARY

SecureOS™: A Working Example Of A Secure BSD OS

of permissions and they are unrelated to the
Domain of the parent process. Also, because
Domain transitions are controlled, this means that
when the integrity of an application depends on
the processing order, the Type Enforcement policy
ensures that the specified order is in fact the actual
order of operations performed by the application.

In the current version of SecureOS, Secure
Computing identified 80+ controllable operations
versus the 30 - 40 IEEE capabilities. Thus
SecureOS can, if necessary, provide finer-grained
control. While it is true that it is very unlikely that
one application, will require independent control
of every possible operation, we believe that it is
undesirable to have the operating system writer
decide, a priori, what separation will be supported.
Rather, we believe that the security mechanisms
should be flexible and scalable so that developers
can choose the granulation of control that is appro-
priate for their application.

Policy Assurance Issues

In addition to the differences in the nature of con-
trol, there is one other significant difference
between the Type Enforcement approach and both
Unix and the IEEE capability model. That differ-
ence is providing reasonable assurance of security of
a given system.

In order to assess the state of the security of a Type
Enforcement system like SecureOS, the bulk of the
work is done by analyzing the single Type
Enforcement security policy specification. On a
Unix system and an IEEE capability system, in
order to extract the state of the security policy one
has to analyze the attributes of a large number of
files and the content of many configuration files on
the system. Moreover, once a security audit of a
Type Enforcement system is done the system state
remains stable, because the policy is typically an
unmodifiable element within the system. Even
when the system demands some degree of extensi-

SECURE

Secure Computing Reprint Series.

bility to the security policy, the changes would be
implemented using an assured pipeline that pro-
vides the required assurance that only the extensible
parts of the security policy will be modified. Both
the Unix and IEEE systems are inherently DAC
types of security which means that once the system
goes into operation there is a need to constantly
review the current system state to assess if a change
has been made that might alter the security posture
of the system.

Conclusion

SecureOS is a working example of a secure BSD
operating system. It provides binary compatibility
with the version of BSD that it is based on. Its Type
Enforcement security mechanisms can be used to
provide strong protection for existing BSD applica-
tions without any need to change or even re-link
the application. This is the approach we took for
the information web server which is part of the
recently announced SCC challenge site; www.chal-
lenge.securecomputing.com The SecureOS syscall
interface makes its Type Enforcement facilities
accessible to application software so that applica-
tions designed to run on SecureOS can take advan-
tages of the Type Enforcement facilities to provide
even finer granulation of control. Such Type
Enforcement aware applications can be even more
attack resistant. The Type Enforcement policy is
independent of the TE Enforcement mechanisms
and can be tuned to a wide range of specific pro-
cessing environments with no change the kernel or
other parts of the operating system.

It is clear that with the rapid increase of connectiv-
ity between an ever growing range of operationally
critical systems, that an increase in security facilities
in commercially available operating systems is nec-
essary. The Type Enforcement technology, though
not widely publicized, has a proven history of pro-
viding very secure processing facilities for both mil-
itary and commercially systems.

11

SECURITYLIBRARY

SecureOS™: A Working Example Of A Secure BSD OS

Bibliography

[Boebert88] Earl E. Boebert, Constructing an Infosec
System Using the LOCK Technology, Proceedings of
the 11th National Computer Security Conference,
89--95, 1988.

[CW87] D. D. Clark and D. R. Wilson, A
Comparison of Commercial and Military Computer
Security Policies, Proceedings of 1987 Symposium
on Security and Privacy, 184--194, 1987.

[Posix.1e] IEEE Std 1003.1e, IEEE Computer
Society, October 1997.

[Organic72] Elliot I Organic, The Multics System;
An Examination of Its Structure, MIT Press, 1972.

SECURE

Secure Computing Reprint Series.

12

